Weak dimension and right distributivity of skew generalized power series rings
نویسندگان
چکیده
منابع مشابه
Simplicity of skew generalized power series rings
A skew generalized power series ring R[[S, ω]] consists of all functions from a strictly ordered monoid S to a ring R whose support contains neither infinite descending chains nor infinite antichains, with pointwise addition, and with multiplication given by convolution twisted by an action ω of the monoid S on the ring R. Special cases of the skew generalized power series ring construction are...
متن کاملPartial Skew generalized Power Series Rings
In this paper, using generalized partial skew versions of Armendariz rings, we study the transfer of left (right) zip property between a ring R and partial skew generalized power series rings
متن کاملGorenstein Weak Dimension of a Coherent Power Series Rings
We compute the Gorenstein weak dimension of a coherent power series rings over a commutative rings and we show that, in general, Gwdim (R) ≤ 1 does not imply that R is an arithmetical ring.
متن کاملON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS
Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...
متن کاملNoetherian Skew Inverse Power Series Rings
We study skew inverse power series extensions R[[y−1; τ, δ]], where R is a noetherian ring equipped with an automorphism τ and a τ -derivation δ. We find that these extensions share many of the well known features of commutative power series rings. As an application of our analysis, we see that the iterated skew inverse power series rings corresponding to nth Weyl algebras are complete, local, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2010
ISSN: 0025-5645
DOI: 10.2969/jmsj/06241093